多光谱和高光谱图像无损和近无损压缩的方法
发布时间:2023-12-20
浏览次数:1321
多光谱和高光谱图像数据信息庞大,需要进行无损或近无损压缩才能更方便地进行光谱信息和图像信息分析。那么,如何压缩呢?本文简单介绍了多光谱和高光谱图像无损和近无损压缩的方法。
多光谱和高光谱图像数据信息庞大,需要进行无损或近无损压缩才能更方便地进行光谱信息和图像信息分析。那么,如何压缩呢?本文简单介绍了多光谱和高光谱图像无损和近无损压缩的方法。
压缩系统的构成和原理
压缩系统原理见图1,该压缩系统由预测器和编码器组成。压缩系统的输人是一幅图像,即一个三维整型数组。压缩系统的输出是压缩码流,使用该压缩码流可以准确或近似地重建输入图像。
预测器使用自适应线性预测方法对每一个图像样本值进行预测,具体见第7章。该预测方法采用当前样本三维邻域中的邻近样本值完成预测。预测按顺序依次执行。预测过程采用样本表征值sz"(t)进行预测计算,样本表征值的计算见如下:
德彩网本文件中的预测器使用均匀量化器对预测残差Δz(t)(即真实样本值和预测值之间的差)进行量化。
量化步长可以通过绝对误差限制和/或相对误差限制来控制。只需要将绝对误差限制设置为零,就可以实现某个谱段的无损压缩。量化系数qz(t)被映射到无符号整数值,即映射量化索引8.(t),这些映射量化索引构成预测器的输出。
压缩图像由帧头(图像参数和压缩参数)和熵编码器输出的压缩码流(对映射量化索引进行无损编码)组成。在编码过程中,熵编码器的参数根据映射量化索引的统计变化可以自适应地进行调整,
压缩模式
当最大误差值mz(t)不等于0时,量化的保真度控制方式为近无损压缩模式;
德彩网反之,当最大误差值mz(t)=0时,量化的保真度控制方式则为无损压缩模式。当选择无损压缩模式时,量化部分可简化为:qz(t)=Δz(t)。
在无损压缩模式下,样本表征值计算中的偏移参数虫。为零,衰减参数ゅ。可选择两种设置:
德彩网a)衰减参数设置为零,此时样本表征值等于原始样本值,即s"z(t)=sz(t);
b)衰减参数设置为非零,此时衰减参数可用于提升无损压缩的性能。
相关产品
-
高光谱数据特征波长变量选择方法有哪些?
高光谱成像仪获取的数据非常的庞大,这些信息比较的冗沉,采取一定的方法提取对建模有效的波长变量,删除冗余变量,减少波长变量个数,优化模型,提高模型预测精确度非常..
-
高光谱数据预处理及高光谱数据特征波段提取方法
高光谱成像仪在获取样品的光谱数据时,会有很多信息是重复的或者是无信息变量甚至可能是影响数据模型结果的噪声数据,因此就需要对光谱数据进行预处理,提取特征波长数据..
-
高光谱成像技术:刑侦领域物证提取
在刑事侦查中,指纹因其唯一性和稳定性被誉为“物证之王”,而血指纹作为恶性案件现场的关键痕迹,其高效提取对案件侦破至关重要。然而,传统方法如Photoshop软件..
-
高光谱成像技术:解锁文物修复的无损密码
在历史的长河中,古籍、壁画等文物承载着人类文明的记忆。然而,高温、高湿、光照等环境因素不断侵蚀着这些文化瑰宝——墨水氧化导致字迹模糊,颜料褪色使壁画失去光彩,石..