高光谱成像仪高光谱图像的去噪方法有哪些?
发布时间:2023-11-24
浏览次数:702
高光谱成像仪采集的三维数据块能够提供被检样品内外部丰富的成分含量信息,但由于高光谱数据具有波段多、分辨率高、数据维度高、冗余性强等特点,因此必须采取合适的的数学算法对数据进行处理和分析。那么,高光谱成像仪高光谱图像的去噪方法有哪些?下文为大家作了介绍。
高光谱成像仪采集的三维数据块能够提供被检样品内外部丰富的成分含量信息,但由于高光谱数据具有波段多、分辨率高、数据维度高、冗余性强等特点,因此必须采取合适的的数学算法对数据进行处理和分析。那么,高光谱成像仪高光谱图像的去噪方法有哪些?下文为大家作了介绍。
德彩网目前国内外主要采用以下几种方法对高光谱图像进行去噪:
1.基于空间域滤波
由于高光谱图像是由二维图像叠加得到的立方体,在空间域上相当于将多个二维图像沿着光谱维叠加,因此在基于空间域的去噪方法中最为直接的处理方式即为分别对每个波段的图像进行去噪。但此方法没有充分利用高光谱图像的谱间相关性,因此去噪效果有限。较为常用的空间域去噪算法主要有全变分法、小波域去噪法、非局部均值法以及BM3D等。
2.基于光谱域滤波
高光谱图像中可提取出成百上千个波段信息,但基于光谱域进行图像去噪时,仅仅考虑了光谱维度,忽略了高光谱图像的空间维度的信息,因此去噪后的高光谱图像会存在一定程度的失真。最常用的光谱域去噪方法主要有最大噪声比率法和SG滤波方法。
3.基于空-谱联合去噪
该去噪方法基于高光谱图像的特性,分为变换域去噪和像素空间去噪。变换域去噪主要为小波域去噪,通过小波对图像进行变换。而像素域去噪不同,是直接对每一个二维图像的像素进行去噪。除此之外,还有直接对三维数据块去噪的方法,如BM4D"等。由于高光谱图像的低秩特性,有学者提出了基于低秩优化的去噪模型,如LRMR去噪方法等。总体而言,该去噪方法相较于前两种方法去噪性能更好,但仍没有充分利用空间信息,因此还可以探寻方法进一步提高该方法的性能。
相关产品
-
高光谱数据特征波长变量选择方法有哪些?
高光谱成像仪获取的数据非常的庞大,这些信息比较的冗沉,采取一定的方法提取对建模有效的波长变量,删除冗余变量,减少波长变量个数,优化模型,提高模型预测精确度非常..
-
高光谱数据预处理及高光谱数据特征波段提取方法
高光谱成像仪在获取样品的光谱数据时,会有很多信息是重复的或者是无信息变量甚至可能是影响数据模型结果的噪声数据,因此就需要对光谱数据进行预处理,提取特征波长数据..
-
高光谱成像技术:刑侦领域物证提取
在刑事侦查中,指纹因其唯一性和稳定性被誉为“物证之王”,而血指纹作为恶性案件现场的关键痕迹,其高效提取对案件侦破至关重要。然而,传统方法如Photoshop软件..
-
高光谱成像技术:解锁文物修复的无损密码
在历史的长河中,古籍、壁画等文物承载着人类文明的记忆。然而,高温、高湿、光照等环境因素不断侵蚀着这些文化瑰宝——墨水氧化导致字迹模糊,颜料褪色使壁画失去光彩,石..