便携式高光谱成像仪对桃子品质和成熟度无损预测研究
发布时间:2023-03-29
浏览次数:1176
便携式高光谱成像仪对桃子品质和成熟度无损预测研究
基于便携式高光谱成像仪的田间桃子品质和成熟度无损预测研究
桃子因其良好的品质和丰富的营养而广受消费者喜爱,但桃子作为一种呼吸性气候的水果,其水分含量很高,容易变色、变软后变质。在日常的生产中,成熟的桃子通常采摘下来后就立即食用,而中熟的桃子被采摘下来后需要经过运输或储存很长一段时间才能上市。在此期间,桃子的质量属性(诸如可溶性固溶物含量和硬度等)会不断地快速变化,因此本文通过高光谱相机采集高光谱图像,并结合化学计量学来确定桃子的内部质量和判别不同成熟度阶段的桃子。
图1果园现场高光谱图像采集和光谱处理

表1 桃子可溶性固溶物含量和硬度含量分布及数据集划分
图1为现场图像采集照片和对高光谱图像中的光谱进行提取和处理。文章采用SPXY法将160个样品划分为100个校正集和60个预测集,集合划分结果和指标如表1所示,图2为中熟和成熟的桃子的平均光谱反射率与标准偏差的示意图。
图2 中熟和成熟的桃子的平均光谱反射率与标准偏差
文章采用CARS算法和随机跳蛙(RF)算法提取有效波长,并基于特征波长建立可溶性固溶物含量(SSC)和硬度的多元线性回归(MLR)模型,建模效果如图3所示。其中SSC的RF-MLR预测模型较好,Rv2为0.88,RMSEV为0.54,硬度的CARS-MLR预测模型较好,Rv2为0.81,RMSEV为1.17。

图3 SSC(a)和硬度(b)实测值与预测值散点图

图4 SFS算法提取的两个波长
在此基础上,文章采用顺序前向选择(SFS)算法提取两个有效波长(957nm,518nm),如图4所示。随后使用LIBSVM模型对桃子的成熟度进行辨别,如图5所示,图5a为模型选取的最佳核参数C=5.7和γ=16,图5b为模型分类识别的准确率,分类识别精度达到91.7%。
图5 LIBSVM模型对桃子成熟期的判别
上一页 : 没有了
下一页 : 高光谱技术带你揭秘枫叶变色过程
本文标签:
便携式高光谱成像仪对桃子品质和成熟度无损预测研究
相关产品
-
高光谱数据特征波长变量选择方法有哪些?
高光谱成像仪获取的数据非常的庞大,这些信息比较的冗沉,采取一定的方法提取对建模有效的波长变量,删除冗余变量,减少波长变量个数,优化模型,提高模型预测精确度非常..
-
高光谱数据预处理及高光谱数据特征波段提取方法
高光谱成像仪在获取样品的光谱数据时,会有很多信息是重复的或者是无信息变量甚至可能是影响数据模型结果的噪声数据,因此就需要对光谱数据进行预处理,提取特征波长数据..
-
高光谱成像技术:刑侦领域物证提取
在刑事侦查中,指纹因其唯一性和稳定性被誉为“物证之王”,而血指纹作为恶性案件现场的关键痕迹,其高效提取对案件侦破至关重要。然而,传统方法如Photoshop软件..
-
高光谱成像技术:解锁文物修复的无损密码
在历史的长河中,古籍、壁画等文物承载着人类文明的记忆。然而,高温、高湿、光照等环境因素不断侵蚀着这些文化瑰宝——墨水氧化导致字迹模糊,颜料褪色使壁画失去光彩,石..